点云编辑模块

Icon

点云导入格式: obj, asc,ply(文本格式),gpc,xyz,gbg, gtg(有序点云格式)

有序点云格式gbg(二进制格式,导入导出速度快),gtg(文本格式),具体的导入导出格式,可以参考Parser,这里提供一个有序点云的例子(Kinect2数据)作为参考


采样:点云点索引采样,与简化不同的是,采样不会改变点云坐标。

  • 均匀(支持有序点云):均匀采样点云,可以设置目标点数。注意,采的是点云点索引,不会改变点云坐标。
  • 几何(支持有序点云):根据点云几何进行采样,曲率越大的地方采样点数越多
  • 格栅(支持有序点云):根据点间距把空间分为一个一个的格子,每个格子采样一个点,并且使得采样的点云尽量均匀。参数为点间距。和均匀采样相比,它的速度更快,但是均匀性稍低。
  • 简化(支持有序点云):与点云采样不同的是,点云简化会改变点云的坐标。它不是采样索引,是把距离近的点合并成一个点。参数意义为空间分辨率,范围[1, 10000],简化后点云内部点距=(点云包围盒 / 分辨率),距离很近的点会融合为一个点。

    测试数据下载: human head

    pointcloudsampling

    法线

  • Front(支持有序点云):计算深度点云(扫描仪初始采集到的点云,相机坐标系下)的法线,法线定向为Z轴正方向。扫描的深度点云的法线可以完美定向,因为法线是朝相机方向的。
  • 计算(支持有序点云):如果点云不是深度点云,或者点云进行了刚体变换,法线不再统一的朝向相机。则它的法线定向可以通过算法计算得到。需要说明的是,目前还没有一种可以完美定向法线的计算方法,因为有些数据有歧义性。一般的情况下,Geometry++的法线定向是很准的。
  • 反向:反转点云法向量方向
  • 修复:鼠标右键单击需要反转法线方向的局部点片
  • 光滑(支持有序点云):光滑点云法向量
  • 更新:重新计算法线,但是法线定向与原始定向一致。这个功能一般用于多帧点云融合成一个点云后,需要重新计算法线,但是同时要保持原有的法线定向。
  • 定向:重新定向点云法线,如果有选择,则定向选择部分的点云。
  • 显示:切换点云显示是否应用法线

  • 修复

  • 孤立项(支持有序点云):去除点云离群孤立项. 需要先计算好法线。参数意义为孤立值阈值,小于这个值的点会被去掉。这个值的几何意义为,点云被分割为不同的块,每个块内点的孤立值为块内点数占总点数的比例。最后可以用“选择-删除”按钮删除选中的点。
  • 飞点(支持有序点云):去除点云飞点。需要先计算好法线。参数意义为孤立值阈值,小于这个值的点会被去掉。这个值的几何意义为,点云被分割为不同的块,每个块内点的孤立值为块内点数占总点数的比例。最后可以用“选择-删除”按钮删除选中的点。
  • 提示:飞点与孤立项的区别-飞点是贴近曲面的噪点,孤立项是远离曲面的一小片点云。可以关掉法线显示(法线-眼睛图标),更容易看到检测出的红色点云部分。
  • 重叠检测:检测点云中重叠部分,需要先计算好法线。参数意义为最大重叠距离(当前点云密度的倍数),超出这个距离的则不会判定为重叠。如图所示,左边的蓝色点云局部放大后,有重影:红色是检测出的重影部分。用户可以删掉它们。右边两个模型是点云三角化的结果,左边的网格是原始点云的重建结果,右边网格是去除重影后的重建结果。对比红线框部分的网格,明显看出去除重影后的重接结果质量要好很多。
  • overlap_compare
  • 光滑(支持有序点云):光滑点云. 参数为光滑的迭代次数,迭代次数越多,光滑得越厉害
  • 平面:检测点云中的平面,并把平面部分的点修复到平面上。点云需要法线信息。参数意义分别为(1)平面距离误差,参数值为点云密度的倍数;(2)平面角度误差

  • 选择:从左至右按钮依次是:右键方框选择,右键方框取消选择,删除选择,是否忽略背面,返回右键平移,点云边界选取

  • 点云边界选取参数:boundarySize,边界厚度. 测试数据下载: cat | glass bottle
  • cat_point_boundary

    三角化:点云重建三角网格,参数为重建质量,范围[0, 6],数字越大精度越高,速度也越慢. 点云如果有颜色,三角化的网格也会继承点云的颜色。开网格选项会保持点云原有形状,闭网格会把点云中的小洞补上。如果选择闭网格,则可以通过补洞参数来控制需要修补的洞大小:洞面积与网格面积的比值小于这个参数的洞,才会被填上。

    face_reconstruction

    三角化2D:二维点云的Delaunay三角化。三角化之前需要把三维点云转化为二维点云,方式是把点云投影到视角平面上。

    triangulate2d

    颜色

  • 颜色融合:多帧点云注册融合后,不同帧之间的颜色往往有些差别,颜色融合去掉不同帧颜色的色差。如下图所示,图1,2两帧彩色点云,分别看质量还可以,但是注册到一块时,如图3所示,会有明显的色差。应用多角度点云颜色融合的功能,图4就是色彩融合后的效果。颜色融合数据下载
  • point_color_merge
  • 输入:彩色点云,点云每个点需要一个colorId信息(Int值)。相同colorId的点可以认为是颜色协调的,不同colorId的点颜色需要融合到一块,得到整体颜色协调的彩色点云。在点云注册模块里经过全局注册融合后的点云有这个信息。详细信息可以参考多角度点云颜色融合。 前三个参数为颜色分量最大色差融合阈值,范围是[0, 1],如果colorId边界处的色差大于这个阈值的地方,则不做颜色融合。三个分量的意义分别为色度,饱和度,亮度。比如想尽量保持住色度,则可以调小其阈值。第四个参数为点云邻域个数,建议参数为12。如果点云非常不均匀,比如线激光数据,请使用纹理应用的颜色融合功能。
  • ColorId:导入ColorId信息
  • 保存:保存ColorId信息
  • 显示:显示ColorId。相同颜色代表同一个ColorId

  • 如果您有任何疑问和建议,欢迎发email:

    contact